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Abstract—We contribute a new approach for in situ automation
of camera placement over time. Our approach incorporates
triggers, regularly evaluating the current camera placement and
searching for a new camera placement when a trigger fires. We
evaluate our approach running in situ with five data sets from two
simulation codes, considering camera placement quality (evalu-
ated using a viewpoint quality metric) and overhead (number of
camera positions evaluated). We find that our approach has a
significant benefit — reduced overhead with similar quality —
compared to the naive approach of searching for a new camera
placement each cycle.

Index Terms—In Situ Visualization, Automated Visualization

I. INTRODUCTION

One important aspect of creating a scientific visualization is
setting the camera position to a location that enables insight.
With post hoc visualization, camera positions are typically
set by scientists — a visualization program starts with an
initial camera position and then scientists can iterate until
locating a suitable camera position. Importantly, this workflow
is possible because post hoc visualization often occurs in a
human-in-the-loop (HITL) setting. With in situ visualization,
however, the workflow often is not HITL, meaning that camera
positions must be selected in some other way. One approach
is to identify a suitable camera position a priori, typically by
using a predecessor calculation that can be visualized post
hoc or by exploiting knowledge from a domain scientist.
Another approach, used by the Cinema [1] project, is to
render from many camera positions, in hopes that at least
one will be useful. With this work, we consider a third
approach: automating the selection of a camera position while
the simulation runs. This approach has the potential to find
good camera positions with reduced calculation and no a priori
knowledge.

This paper builds on two recent results that together provide
a viable in situ approach for finding a camera position at a
single time step. First, Marsaglia et al. [27] considered how
Viewpoint Quality (VQ) metrics can predict user preference
for isosurface data. Their contribution was two-fold: (1) a new
VQ metric, “DDS Entropy,” which combined data entropy,
depth entropy, and shading entropy, and (2) a user study on
isosurface data that established their new VQ metric is a
good rough predictor of preferred views, i.e., when comparing
two camera positions, users often prefer the position with the
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higher DDS Entropy score. Second, Marsaglia et al. [26] then
demonstrated how this approach could be used in an in situ
setting. Once again, they made a two-fold contribution: (1) an
algorithm to efficiently calculate DDS Entropy in a distributed-
memory parallel setting, and (2) an approach for efficiently
searching through the space of possible camera positions to
identify a good camera position.

An important consideration for their approach is the execu-
tion time. Evaluating a VQ metric at a given camera position
requires rendering the scene as well as performing some
additional calculations, meaning each VQ metric evaluation
is slightly slower than rendering a scene. Further, their search
approach incorporated a “budget,” i.e., a budget of N would
consider /N possible camera positions, with the search algo-
rithm intelligently choosing candidate positions to maximize
metric score. That said, Marsaglia et al. recommended lower
search budgets, on the order of ten positions overall, since
users often disagree what view is “best” after a sufficiently
good view is found. In all, a search with a budget of ten would
take about the time it takes to render scenes from ten camera
positions. Further, in the context of a simulation evolving in
time, a trivial extension of Marsaglia et al.’s works would
be to apply their approach at every cycle (or at least each
cycle where visualization is performed). This extension would
succeed in finding good views, but it would perform many
unnecessary calculations, as it would be doing a fresh search
at each cycle.

With this study, we extend Marsaglia et al.’s contributions
to a time-varying setting. The main goal of our approach is
to achieve good camera positions with less work than the
trivial extension. We do this with a trigger-based approach
where the view from the previous time step is reused unless a
trigger “fires” indicating a new search should take place. Our
contributions are two-fold: (1) a proposed approach for time-
varying camera placement and (2) an evaluation of how that
approach performs in multiple settings.

II. RELATED WORK

This related work section first discusses the main area of
camera placement over time (II-A). It then discusses “triggers”
(II-B), which are a key idea in our proposed approach.



A. Camera Placement Over Time

There have been several non-in situ works considering
camera placement. First, several works [20], [23], [24], [33]
have specifically considered flow visualization. Other works
have focused on a path moving through a time-varying data
set [4], [16].

With respect to in situ processing, many works have con-
sidered computational steering [3], [5], [7]-[15], [28], [29],
[31], [35], gaining the benefit of HITL (including camera
placements), but incurring other costs. That said, Yamamoto
et al. [36] employed an in situ approach that differed from
computational steering via HITL. In their approach, they
output videos of the simulation as it evolves over time from
a number of different viewpoints. These videos were passed
to a “Membrane Layer,” where they could be inspected by
domain scientists. Our approach differs from the Yamamoto
et al. approach and from the computational steering approach
in that the domain scientist does not need to be involved.

B. Triggers

Triggers are a mechanism for determining when to perform
actions and what actions to perform. Ideally, triggers are
lightweight enough that they can be run often, and they
“fire” only when heavyweight analysis is needed. The in
situ community has made heavy use of both domain-agnostic
triggers [19], [21], [37] and domain-specific triggers [6], [22],
[30], [32], [34], [38]. That said, none of these trigger-based
works have considered the problem of camera placement.

III. OUR METHOD

Algorithm 1 Automatic Camera Placement Over Time
(ACPOT) Algorithm

global C*;

global DDS™;

global searchBudget;

global threshold;

global needslnitialization = true;

function TimeVaryingCameraSelection:

if needslnitialization then
C* = SearchForCameraPlacement(budget);
DDS* = EvaluateDDSEntropy(C™);
needslnitialization = false;

else
DDS%" = EvaluateDDSEntropy(C™);
if ((1+threshold)x DDS* < DDS%") or
(DDS"" < (1-threshold) x DDS™) then

C* = SearchForCameraPlacement(budget);
DDS* = EvaluateDDSEntropy(C™);

end if

end if

Our method employs a trigger-based approach. We begin
by running the Marsaglia et al. search algorithm [26] for
finding a good camera placement. We refer to this camera
position as C*. We also record the DDS Entropy score for

C* and refer to this score as DDS*. For each subsequent
cycle, we evaluate the DDS Entropy score at C*, and refer
to this score as DDS*". This DDS"" value is used for the
trigger. If the value has changed significantly from DDS™,
then the trigger “fires” and we search for a new view (again
using the Marsaglia et al. search algorithm). The resulting view
becomes the new Cx and its DDS Entropy score becomes
the new DDS*. An important aspect to this approach is how
much change is needed to cue a fire. We represent this as
a percentage threshold, and our results consider the effect
of different threshold settings. Finally, our trigger fires when
DDS*" value goes up or down. Decreases in DDS%" can
correspond to occlusions that have developed, while increases
can indicate that the simulation has evolved (and thus other
viewpoints may now be better). Listing 1 shows pseudocode
for our algorithm.

IV. BACKGROUND FOR EXPERIMENTS

A. Data Sets
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Fig. 1. Renderings of data used in this study. Each row consists of a single
data set: IMPACT-ENERGY (top row), IMPACT-PRESSURE, BALL-OF-
FURY, JETBOX, AMR-WIND (bottom row). The columns correspond to
evolution in time, with the left column being early in the simulation and
the right column being late in the simulation. The camera placement for each
image is the one that maximizes DDS Entropy score.



We conducted our experiments using two different simula-
tion codes, AMR-Wind [2] and CloverLeaf3D [25], and five
total data sets:

o IMPACT-ENERGY: Cloverleaf3D simulation code using
the “Impact” input deck and visualizing isosurfaces of the
energy field. This simulation was executed for 830 cycles
on a 643 mesh and a new camera search was performed
every ten cycles. The isolevels for the visualization were
chosen logarithmically, and one quadrant was clipped
away.

o IMPACT-PRESSURE: Identical to CLOVER-IMPACT-
ENERGY, except the pressure field was visualized.

o BALL-OF-FURY: Cloverleaf3D simulation code using
the “Ball of Fury” input deck and visualizing isosurfaces
of the energy field. This simulation was executed for
9100 cycles on a 643 mesh and a new camera search
was performed every hundred cycles. The isolevels for
the visualization were chosen logarithmically.

o JETBOX: Cloverleaf3D simulation code using the “Jet-
box” input deck and visualizing isosurfaces of the energy
field. This simulation was executed for 1200 cycles on
a 256 x 128 x 256 mesh and a new camera search was
performed every ten cycles. The visualization clipped one
quadrant away.

« AMR-WIND: AMR-Wind simulation of 65 cycles on a
8483 mesh, with a new camera search every cycle. The
visualization was of isosurfaces.

Figure 1 shows renderings from each data set.

B. Metrics

There are two main ways to evaluate an ACPOT algorithm.

First, how much work is needed to execute the algorithm?
Our metric for this is the number of camera placements
considered. We use this metric since execution time varies
significantly across data set — the time it takes to evaluate
the DDS Entropy score for a camera placement is essentially
the time it takes to render the data set, and this time varies
based on scale, data size, etc.

Second, what is the quality of camera placement achieved
by the algorithm? Our metric for this is the loss in DDS
Entropy. For example, if a fresh search found camera C*
with DDS Entropy score DDS* and if the ACPOT algorithm
recommended camera C'°*" with score DDS%", then loss in
DDS Entropy would be DDS* — DDS*". We chose this
metric because of the previous user study by Marsaglia et al.
which that demonstrated that users prefer higher DDS Entropy
scores. That said, their previous work only established that a
higher DDS Entropy score led to increased user preference,
and did not provide intuition about what magnitude change in
metric value is significant. For this study, we have reanalyzed
their user study corpus to consider the impact of changes in
DDS Entropy. This new analysis is in Table I. From this
analysis, we conclude that searching for views where the
DDS Entropy improvement is less than 0.25 is unlikely to
be beneficial (i.e., result in finding a view that a user prefers
over the current one), but searching for views where the

improvement is 0.5 or bigger is more likely to be beneficial
(with 0.75 and up particularly so).

TABLE I
RE-ANALYZING THE USER STUDY FROM MARSAGLIA ET AL. TO INFORM
WHAT MAGNITUDE DIFFERENCE IN DDS ENTROPY IS SIGNIFICANT. THEIR
USER STUDY CONSIDERED PAIRS OF CAMERAS AND ASKED USERS TO
CHOOSE THEIR PREFERENCE BETWEEN THEM. IF THE DIFFERENCE IN
DDS ENTROPY BETWEEN TWO CAMERA PLACEMENTS WAS BETWEEN 0
AND 0.25, THEN USERS PREFERRED THE CAMERA WITH THE HIGHER DDS
ENTROPY SCORE ONLY 55% OF THE TIME. HOWEVER, IF THE DIFFERENCE
BETWEEN THEM WAS GREATER THAN 1.0, THEN USERS PREFERRED THE
CAMERA WITH THE HIGHER DDS ENTROPY SCORE 79% OF THE TIME.

0-0.25
55%

0.25-0.5
58%

0.5-0.75
62%

0.75-1.0
80%

1.0+
79%

Difference in Entropy
User Preference

V. RESULTS

This section details our results in two phases. The two main
“knobs” in our algorithm are the search budget and threshold.
The first phase considers search budget, i.e., how much does
VQ metric score improve when the search budget increases?
This phase is conducted entirely through post hoc experiments.
The second phase uses the findings from the first (specifically
narrowing the search budget to options of 10 or 20) and then
considers how our ACPOT algorithm behaves overall. This
phase is conducted entirely through in situ experiments.

A. Phase 1: Search Budget

As discussed in the introduction, evaluating a VQ metric for
a given camera position has non-negligible cost. As a result, it
is desirable for an ACPOT algorithm to produce good views
with a “small” number of VQ metric evaluations. In all, the
goal of this phase is to inform how many views should be
considered when doing a search (i.e., search budget).

Our experiments used the DDS Entropy metric on the
IMPACT-ENERGY, IMPACT-PRESSURE, and BALL-OF-
FURY data sets. We considered search budgets of 1, 4, 5,
10, 20, 25, and 100. For some of our analyses, 100 was used
as a reference, e.g., how did a search with N camera positions
compare to the search with 100 camera positions? The camera
placements were chosen using the Fibonacci Lattice, a method
for equally distributing points around a sphere.

Selecting a subset of camera positions can lead to
noisy data. For example, for a search budget of four,
choosing positions [0, 25,50,75] on the Fibonacci lattice
may lead significantly different results than choosing po-
sitions  [12,37,62,87]. To counteract this, we averaged
across all possible “evenly-spaced” selections for a bud-
get. For example, for a budget of four, we considered
[0,25,50,75],[1,26,51,75],...,[24,49,74,99], and used the
average result across the 25 possible selections.

Figure 2 shows the results of the tradeoff between the
search budget and average obtained VQ metric score (i.e.,
DDS Entropy). Considering just a single view (i.e., search
budget equals one) is clearly a bad strategy, which is not
surprising. Further, budgets of four and five show some
noticeable deviation from the larger budgets. On the other end,
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Fig. 2. Six figures considering the effect of search budget. Each of the six
figures shows the evolution over time, i.e., the simulation cycle number is the
X-Axis of the plot. The Y-Axis varies based on analysis. In the left column, the
analysis shows the absolute scores for DDS Entropy. In the right column, the
analysis considers results normalized by the DDS Entropy score from a search
budget of 100. Finally, each row corresponds to a data set: IMPACT-ENERGY
(top), IMPACT-PRESSURE (middle), and BALL-OF-FURY (bottom).

a budget of 25 only added benefit for the IMPACT-PRESSURE
data set, and was similar to a budget of 10 or 20 for other data
sets. In all, we decided to focus our Phase 2 results on search
budgets of 10 and 20, as they provide much of the quality
compared to a search budget of 100 views, but at reduced
cost.

B. Phase 2: ACPOT Performance

This phase evaluates the performance of the ACPOT ap-
proach. This phase considers the remaining “knob” — thresh-
old — and then considers the performance of the algorithm
with respect to the two metrics discussed in Section IV-B:
number of camera positions considered and loss in DDS
Entropy score.

The experiments for this phase are as follows. First, the
data sets considered were BALL-OF-FURY, JETBOX, and
AMR-WIND. All experiments were performed in situ with
the simulation data being passed to Ascent [17], an in situ
analysis and visualization library, where it is evaluated by our
algorithm. The Cloverleaf3D runs occurred on our local cluster
(“Alaska”) on a single node. The AMR-Wind runs occurred
on the Summit supercomputer at Oak Ridge on 25 nodes
using 130 MPI ranks and 130 GPUs. Finally, we considered
six threshold percentages: 0%, 1%, 2%, 3%, 4%, and 5%.
Note that a 0% threshold means the trigger for the ACPOT
algorithm will be triggered every time the DDS Entropy score

changes, which in effect means that a new search will happen
every cycle.
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Fig. 3. Six figures plotting the DDS Entropy loss with respect to threshold.
Each of the six figures shows the evolution over time, i.e., the simulation cycle
number is the X-Axis of the plot. The Y-Axis for each is the loss in DDS
Entropy score from using our ACPOT algorithm compared to the strategy of
searching for a new camera each cycle. The rows are organized by data set:
JETBOX (top), BALL-OF-FURY (middle), and AMR-WIND (bottom). The
columns are organized by search budget: 10 (left) and 20 (right).

Figure 3 and Table II describe both the effect of threshold
and the efficacy of our ACPOT algorithm. Figure 3, which
plots how each threshold performs as the simulation evolves,
shows that our approach rarely results in rising above 0.5 (the
value we identified as one where we should be searching for
new views), and for the most part the views that our ACPOT
algorithm returns stays beneath that value. That said, Figure 3
shows the BALL-OF-FURY data set with a search budget
of ten shows an issue where the search resulted in a view
that did not change DDS Entropy score as the simulation
evolved. As a result, it got “stuck” in a bad view. This failure,
which can be seen in our results in this section as well,
suggests future work (see Section VI). Table II shows the
time-averaged results for each of the curves in Figure 3. The
average loss in DDS Entropy is small, but it is important
to keep in mind that these are averages, and (as seen in
Figure 3) these averages represent some intervals in time
where it would likely be worthwhile to search for a new
camera position. Table II also shows that the speedup from our
ACPOQOT algorithm is significant when compared to the strategy
of searching for a new camera placement each cycle — as
much as 10X faster for some configurations. Overall, Table II
provides significant evidence that our algorithm is achieving
its goals — a significant speedup with only a small loss in
quality. Further, higher thresholds (like 5%) seem to perform



fairly well. Finally, Figure 4 provides additional analysis on
the relationship between overhead and quality. In particular,
once the number of trigger “fires” drops below a threshold,
the DDS Entropy loss starts going up quite quickly.

2012
8006 g
E 005 -4 Eo10 -4
@« = @ =
a & 0 0.08 3
8004 @e SR . EE]
< c .
2003 ey s £006 o 2
- -2 £ @ -2 2
S002 S £ Soos £
<3 )
0.01 1 0.02 ° -1
g fatoee , o g [Wen ?
Z 000 * S e, o Z 0.00 998 e 0000 o0 o o
20 40 60 80 100 120 0 20 40 60 80 100 120
Number of Triggered Searches Number of Triggered Searches
- o 5 - -5
§0.25 S 00
€ -4 € -4
Wo.20 u
4 ®  Bois g x
a 32 a 33
0.15 S k S
£ < £ <
@ 2 © 010 e @
£0.10 22 g L2 ©
3 £ 3 [
@ o
%005 4 ) 0.05 .,
9 8 ‘U,
Z 000 DP=messesss o0 . . o Z 0.00 ®0e 0o 00 o o o o
0 20 40 60 80 0 20 40 60 80
Number of Triggered Searches Number of Triggered Searches
> 0.040 5 2 s
g 19
20035 5
= . b= 008 9 4
uw 0.030 o0 °
(%) » = 8 [ =
Q005 ‘= ,5 Qoo 7, .2
° b= e}
£0020 ° w g2 = ~ 2
@ . g 2004 4
20015 22 8 . 2 £
- o . =
0.010 - @ 002
e #°° o% -1 g K B
£ 0.0 - B %o
Z 0.000 ° e . e . Z 000 *%e o o o

o
o

10 20 30 40 50 60 ) 10 20 30 40 50 60

Number of Triggered Searches Number of Triggered Searches

Fig. 4. Six figures comparing the relationship between the number of triggered
searches and DDS Entropy loss given a threshold percentage. Each figure
considers 100 threshold values (ranging from 0% to 5%) and makes a scatter
plot out of the 100 results. The X-Axis is the number of times a trigger
fires and generates a new search. The Y-Axis is the average DDS Entropy
loss compared to the strategy of searching for a new camera each cycle. The
rows are organized by data set: JETBOX (top), BALL-OF-FURY (middle),
and AMR-WIND (bottom). The columns are organized by search budget: 10
(left) and 20 (right). The columns on the right have higher DDS Entropy loss
in some cases because they are comparing to a higher standard (the best out
of 20 possible camera placements instead of 10).

VI. CONCLUSION

Our ACPOT approach provides a new option for automated
camera placement. Two important premises of our research
are that (1) many simulation teams do not have a priori
knowledge of where to place the camera, especially in the
context of evolving simulations and (2) the available time for
visualization for some simulation campaigns are small enough
that it is not possible to render a bunch of camera positions
(e.g., Cinema). When both of these premises are true, we feel
our ACPOT approach is currently the best available option,
especially in light of our experimental results.

That said, there are many opportunities for future work.
First, our algorithm failed by getting “stuck” in one con-
figuration, and we believe our algorithm can be improved
by searching for new views at regular durations. Second,
DDS Entropy is an imperfect predictor of user preference.
Further, it has only been shown to be effective for isosurfaces.
That said, as new VQ metrics become available, we feel
our ACPOT approach can be adapted in a straight-forward

TABLE II
THE PHASE 2 RESULTS OF APPLYING OUR ACPOT ALGORITHM IN SITU
FOR THE THREE DATASETS: JETBOX, BALL OF FURY, AND AMR-WIND.
FOR EACH SIMULATION RUN, THE ACPOT ALGORITHM UTILIZES A
TRIGGER BASED ON A PERCENTAGE THRESHOLD (% TH), AS WELL AS A
FIXED CAMERA BUDGET (CB). THIS TABLE SHOWS THE NUMBER OF
TIMES THE TRIGGER WAS FIRED (# OF T) OVER THE SIMULATION RUN,
THE TOTAL NUMBER OF CAMERA EVALUATIONS (# OF CE), THE AVERAGE
LOSS IN DDS ENTROPY SCORE (ALDE) BETWEEN THE VQ METRIC
SCORE OF THE SELECTED CAMERA AND THE VQ METRIC SCORE OF THE
BEST POSSIBLE CAMERA AMONGST THE CAMERA BUDGET, AS WELL AS
THE OVERALL SPEEDUP (SUP) ACHIEVED WHEN USING OUR ACPOT
ALGORITHM COMPARED TO THE TRIVIAL SCENARIO OF EXECUTING A
NEW CAMERA SEARCH EVER CYCLE.

Dataset | % Th | CB | #0f T | #0f CE | ALDE | SUP
5% 10 7 192 .06 6.3X

4% 10 9 210 .05 57X

3% 10 11 228 04 53X

2% 10 16 273 02 4.4X

1% 10 26 363 .02 33X

% 0% 10 120 1200 0.0 0.0X
2 5% | 20 3 234 09 10.3X
= 4% | 20 7 272 .09 8.8X
3% | 20 11 348 .05 6.9X

2% | 20 15 424 01 57X

1% | 20 32 747 01 3.2X

0% | 20 120 2400 0.0 0.0X

5% 10 2 118 004 | 77X

4% 10 2 118 004 | 77X

3% 10 4 136 004 | 67X

2% 10 3 127 26 72X

1% 10 9 181 004 | 50X

B 0% 10 91 910 0.0 0.0X
= 5% | 20 4 186 19 9.8X
ks 4% | 20 5 205 18 8.9X
= 3% | 20 5 186 14 8.9X
2 2% | 20 6 224 11 8.1X
1% | 20 17 433 01 42X

0% | 20 91 1820 0.0 0.0X

5% 10 7 137 04 47X

4% 10 8 146 03 45X

3% 10 9 155 .02 42X

2% 10 10 164 .03 4.0X

1% 10 14 200 .02 3.3X

E 0% 10 65 650 0.0 0.0X
S 5% 20 7 217 .09 6.0X
& 4% | 20 7 217 .09 6.0X
5 3% | 20 7 217 09 6.0X
2% | 20 9 255 07 51X

1% | 20 12 312 07 42X

0% | 20 65 1300 0.0 0.0X

way to incorporate these metrics. Finally, while we evaluated
an appreciable number of data sets, search budgets, and
thresholds, performing additional evaluation would further
demonstrate our approach’s efficacy. We plan to do this by
running with additional code teams. This should be straight
forward to accomplish, since our approach has been deployed
in Ascent [18].
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