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THESIS ABSTRACT

Meghanto Majumder

Master of Science in Computer Science

Title: A Multi-Phase Framework for Vector Field Sampling Using FTLE, Context, and Gradient

Features

Computational simulations on high-end supercomputers frequently cannot save high-resolution

data to disk for post-hoc analysis, due to recent trends where overall compute power has accelerated

much more quickly than I/O bandwidth. Data-driven intelligent sampling addresses this challenge,

by helping to capture and analyze features for post-hoc analysis without requiring prior knowledge

about data features. Recent work has demonstrated that data-driven sampling approaches can sig-

nificantly outperform random sampling for large-scale scalar field visualization and analysis tasks.

However, vector field sampling for such scientific simulations presents fundamental challenges in

preserving both local accuracy and global flow structure.

We introduce a novel multi-phase sampling framework that combines finite-time Lyapunov

exponent analysis, structured spatial context preservation, and gradient-based feature detection.

Our approach outperforms random sampling and existing data-driven scalar sampling techniques

by significantly improving streamline and pointwise angle accuracy, as demonstrated on six diverse

scientific data sets at sampling rates of 1% to 5%.

This thesis includes previously unpublished coauthored material.
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Chapter 1

Introduction

This chapter is based on a coauthored paper. I was the lead author and primary

researcher, responsible for implementing all software, running all experiments, and

writing the text. Ayan Biswas contributed ideas regarding initial project direction and

guidance on specific techniques. Hank Childs served as my advisor and provided writ-

ing feedback as well as assistance in analyzing results and discussing adaptations to

approach.

The exponential growth in computational power has revolutionized scientific discovery through

large-scale simulations. Modern supercomputers generate petabyte-scale data sets with unprece-

dented spatiotemporal resolution, offering insights into complex phenomena across disciplines.

However, this computational advancement has created a critical challenge: while processing power

continues to scale, I/O capabilities lag significantly behind. This disparity has rendered traditional

post hoc workflows, where simulation data is saved to permanent storage for later analysis, in-

creasingly impractical.

Recent work has demonstrated that data-driven sampling approaches can significantly outper-

form random sampling for large-scale scalar field visualization [4]. These methods, which combine

value-based importance with local smoothness metrics, have shown promise for in situ data reduc-

tion. However, extending these techniques to vector fields—ubiquitous in scientific simulations
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from fluid dynamics to astrophysics—presents several fundamental challenges.

First, while scalar fields have clear value-based importance metrics that can identify rare or

important values, the extension to vector fields is non-trivial. Traditional scalar importance metrics,

such as sampling a vector field by assigning importance based on vector magnitude or direction

rarity may fail to capture the complex spatial and temporal relationships inherent in vector fields.

Vector fields contain critical directional information that cannot be captured by magnitude alone,

requiring simultaneous preservation of both local directional changes and global flow behavior.

Second, the extension of smoothness-based sampling to vector fields requires careful con-

sideration. In scalar fields, the gradient magnitude provides a clear measure of local variation.

However, vector field gradients are represented by 3×3 Jacobian matrices, making it challenging

to distill this rich directional information into meaningful sampling criteria.

Third, the evaluation of sampling quality for vector fields demands different approaches than

those used for scalar fields. Traditional metrics like Signal-to-Noise Ratio (SNR) or correlation

coefficients fail to capture important vector field characteristics and flow behavior preservation.

Unlike existing approaches that treat vector fields as collections of independent scalar compo-

nents, our method specifically addresses the interdependent nature of vector components and their

spatial relationships. Our approach addresses these challenges through a novel sampling strategy

that combines:

1. Finite-Time Lyapunov Exponent (FTLE)-based feature identification and sampling to cap-

ture regions of significant flow separation

2. Context-aware neighborhood sampling around high FTLE regions

3. Gradient-based sampling using vector field Jacobians

We evaluate this approach across six scientific data sets, including asteroid impacts, atmo-

spheric phenomena, and fluid dynamics simulations. Using streamline reconstruction accuracy

and vector angle preservation as our primary metrics, we demonstrate consistent improvement over

random sampling and adaptations of existing scalar field techniques. Our evaluations demonstrate

consistent improvements in both local and global accuracy metrics, with relative improvements
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in angular accuracy and streamline distance ranging from 1.02 to 1.39 across diverse scientific

datasets. This approach enables scientists to reduce vector field storage requirements while main-

taining the ability to accurately reconstruct critical flow features for post-hoc analysis.
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Chapter 2

Related Work

This chapter is based on a coauthored paper. I was the lead author and primary

researcher, responsible for implementing all software, running all experiments, and

writing the text. Ayan Biswas contributed ideas regarding initial project direction and

guidance on specific techniques. Hank Childs served as my advisor and provided writ-

ing feedback as well as assistance in analyzing results and discussing adaptations to

approach.

2.1 Sampling-Based Data Analysis and Visualization

The challenges posed by large-scale data sets have led the visualization community to develop var-

ious data sampling techniques aimed at reducing the data size for timely analysis and visualization.

Park et al. proposed a visualization-aware sampling technique optimized for specific visualization

techniques such as scatter plots and map plots [19]. Nguyen and Song addressed simple ran-

dom sampling limitations by proposing a centrality clustering-based data sampling scheme [16].

Woodring et al. introduced a stratified random sampling-based scheme for summarizing cosmol-

ogy simulations, enabling interactive post-hoc visualization[33]. Wei et al. extended this approach

by incorporating bitmap indexing and information-theoretic measures, creating in situ compressed

subsampled data sets [30]. Information theoretic measures such as information entropy have also
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been leveraged by researchers for effective data subsampling. Building on information theory,

Biswas et al. presented a scheme for in situ sampling of large-scale data sets, preserving important

features through probability-based importance assignment [3]. Rapp et al. contributed a sampling

approach for scattered data sets, that identified a subset of points in order to preserve the blue

noise properties of the original data [20]. Biswas et al. extended their work on in situ sampling

by incorporating local smoothness of the data during the importance assignment phase [4]. Our

proposed methods extend the work of Biswas et al., working on regular grid data sets and intending

to capture the feature regions of vector fields at very low sampling rates.

2.2 Large-Scale Data Reduction and Visualization

With the ever-increasing size of simulation data, scientists have explored techniques for data reduc-

tion to facilitate interactive analysis and visualization. In situ visualization infrastructure integrated

into existing frameworks enables direct visualization during simulation execution[9, 15, 27, 32].

However, certain data analysis and visualization tasks require post hoc visualization owing to

time and resource constraints. Dutta et al. addressed this by developing in situ to post-hoc-

capable flexible data summarization techniques, employing Gaussian mixture model-based data

representations[6, 7]. Wang et al. extended data reduction efforts by incorporating spatial distribu-

tions for accurate data recovery[28, 29]. In situ generated histograms, as utilized by Ye et al., use

an accelerated post hoc query-based visual analysis[34]. Cinema and Tikhonova ’s image-based

approaches represent emerging techniques for efficient post hoc visualization [2, 26]. Lakshmi-

narasimhan et al.’s ISABELA focused on in situ sort-and-B-spline error-bounded lossy abatement

for scientific data [13] . This work, in contrast to data-modeling-based approaches, emphasizes

the reduction of data sets by preserving a small subset of representative data samples. The sub-

sampled data serve as a proxy for full-resolution raw data, facilitating the direct performance of

various visualization tasks without additional post hoc processing.
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2.3 Subsampling Techniques for Vector Fields

There have been many vector field analysis and compression techniques, and they can be consid-

ered based on their methodologies and applications. There have been approaches that explore the

effectiveness of Lagrangian representations, as demonstrated by Sane et al., who introduced an

approach for in situ reduction in cosmology and seismology simulations [21]. Another approach

focuses on radial basis function (RBF) approximation, as seen in Smolik et al. and Smolik et al.,

demonstrating the suitability of RBF for preserving critical points and handling large scattered vec-

tor fields [22, 23]. The third category involves topological simplification, with papers by Weinkauf

et al., Lodha et al., and Theisel et al. addressing the extraction of higher-order critical points, hi-

erarchical refinement for 2D vector fields, and the combination of topological simplification with

topology-preserving compression[14, 25, 31]. Key papers have concentrated on compression tech-

niques, including subsampling-based methods by Agranovsky et al., and detail-preserving strate-

gies for smoke-based flow visualization by Yuan et al. [1, 35]. Finally, papers like Koch et al. and

Dey et al. delve into novel vector field approximation techniques using linear neighborhoods and

Delaunay triangulations, respectively [5, 12]. In contrast, our study aims to develop and evaluate

data-driven importance-based sampling methods specifically designed for vector fields.
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Chapter 3

Methodology

This chapter is based on a coauthored paper. I was the lead author and primary

researcher, responsible for implementing all software, running all experiments, and

writing the text. Ayan Biswas contributed ideas regarding initial project direction and

guidance on specific techniques. Hank Childs served as my advisor and provided writ-

ing feedback as well as assistance in analyzing results and discussing adaptations to

approach.

3.1 Fundamental Considerations in Vector Field Sampling

The sampling of vector fields presents distinct methodological challenges that require a more so-

phisticated approach than scalar field sampling. While scalar field sampling techniques could be

applied for vector fields using metrics such as vector direction or magnitude distributions, such sim-

plifications risk losing crucial information about how vectors interact and evolve across space and

time. In vector fields, the significance of any given vector cannot be determined by its components

alone - the same vector can be part of vastly different flow behaviors depending on its surrounding

context. This spatial dependency manifests primarily in two ways: through long-term trajectory

behavior that reveals how flow regions evolve and separate over time, and through the rate at which

vector directions change across space. The long-term behavior itself cannot be fully understood
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without capturing the local context around significant regions, since flow evolution depends on the

interaction between neighboring vectors. Each of these aspects captures different characteristics

of the underlying field structure, and missing any one of them could result in an incomplete rep-

resentation of the field’s behavior. Moreover, features evident through one type of analysis might

be entirely invisible through another, making any single approach insufficient for comprehensive

field understanding. This inherent multi-faceted nature of vector field features, combined with the

context-dependent significance of individual vectors, demands a sampling strategy that can:

1. Identify regions of significant dynamic behavior

2. Preserve the spatial context necessary for understanding flow features

3. Capture areas of rapid local variation in the field

These requirements - identifying dynamically significant regions, preserving spatial context,

and capturing rapid local variation - naturally lead to a multi-stage sampling framework that ad-

dresses each aspect systematically.

3.2 Multi-Stage Analysis Framework

Our framework addresses the multi-faceted nature of vector field analysis through an integrated,

multi-stage approach. Rather than treating feature identification, context preservation, and local

structure analysis as separate concerns, we develop a methodology that considers these components

in relation to each other. This approach combines FTLE-based feature analysis with structured

spatial sampling to investigate both local and global field characteristics. This method is then

combined with the smoothness-based importance sampling outlined by Biswas et al [4]. Each

stage of the framework builds upon information gathered in previous stages, aiming to satisfy the

requirements outlined above.
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3.2.1 Feature Identification Through FTLE Analysis

We extend the value-based importance sampling framework of Biswas et al. [4] to the vector field

context through FTLE computation. For a normalized vector field v(x), we compute the FTLE

field σ(x) through analysis of the flow map gradient tensor:

σ(x) =
1

T
ln
√

λmax(M(x))

where M(x) represents the Cauchy-Green deformation tensor computed over integration time

T .

The FTLE field provides a scalar measure that quantifies trajectory separation, enabling the

application of value-based importance sampling. We achieve approximately uniform coverage

across the range of observed FTLE values, ensuring representation of diverse separation behaviors.

This approach maintains the statistical rigor of the original method while adapting it to capture

vector field dynamics.

3.2.2 Structured Neighborhood Sampling

To preserve the spatial context when sampling vector field features, we develop a structured neigh-

borhood sampling strategy. For each point p identified through FTLE-based sampling, we select

additional samples along the six cardinal directions (±x,±y,±z) at a fixed radius r:

pi = p+ rei

where ei represents the unit vectors in the cardinal directions. In cases where proposed neigh-

borhood points coincide with previously selected samples, we employ random selection from re-

maining unsampled points in the vicinity, maintaining the sampling budget allocated. This struc-

tured approach using cardinal directions provides consistent spatial context while avoiding the

computational overhead and potential bias of more complex neighborhood sampling patterns.
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3.2.3 Local Structure Characterization Through Gradient Analysis

To identify regions of significant directional variation in the vector field, we analyze the local gra-

dient structure. The Jacobian matrix J(x) of the vector field provides a measure of local directional

change along the three axes. We compute its Frobenius norm to obtain a scalar measure of local

structure:

L(x) = ||J(x)||F =

√∑
i,j

|Jij|2

This measure quantifies the magnitude of directional change in the vector field, with higher

values indicating regions of lower smoothness. Our sampling strategy prioritizes regions where

L(x) is large, making it more likely to select regions where the vector field exhibits rapid direc-

tional variation. This approach ensures detailed representation of field features that manifest as

discontinuities or sharp transitions, while allowing sparser sampling in regions of relative unifor-

mity.

The combination of this gradient-based analysis with our FTLE-based feature identification

creates a complementary sampling strategy. While FTLE analysis captures longer-term trajectory

behavior and separation dynamics, the gradient-based approach ensures representation of imme-

diate local structure. By incorporating both measures into our sampling framework, we address

the multi-scale nature of vector field features - from instantaneous directional changes to evolving

flow patterns.

3.2.4 Integrated Multi-Phase Sampling Algorithm

The algorithm for our multi-phase sampling framework implements a hierarchical selection strat-

egy that addresses the different aspects of vector field representation. Algorithm 1 formalizes

this process in a way that maintains the strict sampling budgets while integrating the previously

described theoretical components.

The sampling budget allocation, governed by coefficients α, β, and γ where α + β + γ =

17



Algorithm 1 Multi-Phase Vector Field Sampling
Require: Vector field V , total points N , sampling ratio η, coefficients α, β, γ, neighbor radius r
Ensure: Set of sampled points S

1: S ← ∅ ▷ Initialize empty sample set
2: M1 ← Nηα ▷ Points for FTLE sampling
3: M2 ← Nηβ ▷ Points for neighborhood sampling
4: M3 ← Nηγ ▷ Points for gradient sampling
5: // Phase 1: FTLE-based Feature Sampling
6: σ ← COMPUTEFTLE(V)
7: H1 ← ValueBasedImportanceSampling(σ,M1)
8: S1 ← PROBABILISTICSELECT(H1,M1)
9: S ← S ∪ S1

10: // Phase 2: Structured Neighborhood Sampling
11: Hσ ← COMPUTEHISTOGRAM(σ)
12: ftlethreshold ← FINDTHRESHOLD(Hσ,M2/6)
13: for p ∈ S1 do
14: if σ(p) ≥ ftlethreshold then
15: for d ∈ {±x,±y,±z} do
16: q← p+ rd
17: if q /∈ S then
18: S ← S ∪ {q}
19: else
20: q′ ← RANDOMUNPICKEDNEIGHBOR(p, r)
21: S ← S ∪ {q′}
22: end if
23: end for
24: end if
25: end for
26: // Phase 3: Gradient-based Sampling
27: J← COMPUTEJACOBIAN(V)
28: L← FROBENIUSNORM(J)
29: Ωremain ← {x ∈ Ω : x /∈ S} ▷ Unpicked points
30: H2 ←

SMOOTHNESSBASEDIMPORTANCESAMPLING(L|Ωremain ,M3)
31: S3 ← PROBABILISTICSELECT(H2,M3)
32: S ← S ∪ S3
33: return S

1, establishes precise bounds on the contribution of each sampling criterion. The FTLE-based

importance sampling operates on the initial budget of M1 = Nηα points, where the importance

function construction inherently prioritizes regions of significant flow separation. ValueBased-

ImportanceSampling refers to the algorithm described in Biswas et al [4], and uses the FTLE
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field as the input.

For the next phase, the algorithm dynamically computes ftlethreshold based on the statistical

distribution of FTLE values, ensuring that the neighborhood sampling budget M2 = Nηβ is never

exceeded. The threshold FTLE value is the cutoff point, above which the neighbors will be se-

lected.

The smoothness-based sampling phase restricts the sampling domain to Ωremain, the com-

plement of previously selected points. This constraint ensures that the final M3 = Nηγ points

effectively capture additional structural information not already represented in the feature-based

or neighborhood samples. SmoothnessBasedImportanceSampling is similar in nature to

the Smoothness-based importance sampling in Biswas et al [4], however the smoothness field is

calculated as described above.

This algorithmic formulation provides a framework for implementing the theoretical compo-

nents described earlier while maintaining strict control over the number of sampled points through

explicit budget allocation. The resulting sampling set S thus satisfies the three components of

vector field sampling identified earlier.

Our implementation employs empirically determined coefficients for budget allocation, with

α = 0.1 devoted to FTLE-based feature sampling, β = 0.4 for structured neighborhood sampling,

and γ = 0.5 for smoothness-based sampling, and r = 5 × grid cell size. The FTLE computation

integrates trajectories over 20 time steps, providing sufficient temporal extent to identify mean-

ingful flow separation while maintaining computational efficiency suitable for in situ deployment.

These parameters were determined through extensive experimentation across our test data sets,

optimizing the balance between feature preservation and computational overhead.

3.2.5 Computational Characteristics and Scalability

Our framework’s computational profile is characterized by linear-time operations and inherent

parallelizability. Each phase - FTLE computation, neighborhood selection, and gradient analysis -

scales linearly with input size and can be executed independently across spatial domains leading to
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high parallelizability. The FTLE computation, while potentially intensive, is computed once using

a low number of steps (20) and reused across sampling phases. The histogram-based importance

functions require O(n) operations for construction and O(1) for lookups. Neighborhood sampling

introduces minimal overhead, and can also be parallelized. Hence, the approaches considered are

all suitable for in-situ deployment, where leveraging the computational power is crucial.
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Chapter 4

Experimental Overview

This chapter is based on a coauthored paper. I was the lead author and primary

researcher, responsible for implementing all software, running all experiments, and

writing the text. Ayan Biswas contributed ideas regarding initial project direction and

guidance on specific techniques. Hank Childs served as my advisor and provided writ-

ing feedback as well as assistance in analyzing results and discussing adaptations to

approach.

Our evaluation methodology employs rigorous analysis of both streamline accuracy and vec-

tor field reconstruction quality across diverse scientific data sets. We assess performance through

carefully designed comparative metrics while ensuring reproducibility through multiple trial runs.

4.1 Data Set Selection

We validate our approach across six scientific data sets representing different domains and flow

characteristics:

1. Asteroid Impact: Water impact simulation, velocity field (100×100×100) [11]

2. Hurricane Isabel: Atmospheric simulation, velocity field (250×250×50) [17]

3. CM1 Tornado: Atmospheric simulation, vorticity field (176×222×100) [18]
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(a) Asteroid Impact (b) Hurricane Isabel
(c) Fishtank

(d) CM1 Tornado
(e) Nimrod-Magnetic (f) Astro-Supernova

Figure 4.1: Original streamlines for the six datasets used in the study: (a) Asteroid Impact, (b) Hurricane
Isabel, (c) Fishtank, (d) CM1 Tornado, (e) Nimrod-Magnetic, and (f) Astro-Supernova.

4. Astro-Supernova: Astrophysical simulation, velocity field (128×128×128) [8]

5. Nimrod-Magnetic: Plasma physics simulation, magnetic field (150×150×150) [24]

6. Fishtank: Fluid dynamics simulation, velocity field (100×100×100)

[10]

Fig. 4.1 shows a visualization of streamlines generated from these data sets.

4.2 Methods Compared

We evaluate our multi-phase approach against several baseline and component methods:

1. Random Sampling: Traditional uniform random sampling serving as the primary baseline.

2. Component Methods:
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1. Value-based FTLE Sampling: Uses only FTLE field values for importance-based sam-

pling

2. Smoothness-based Sampling: Uses only Frobenius norm of the Jacobian for sampling

3. Value-based FTLE + Neighborhood Sampling: Picks 20% of samples using Value-

based FTLE sampling, and the rest using structured neighborhood sampling from high

FTLE values

4. Value-based FTLE + Smoothness Sampling:

Equal weighting between FTLE and smoothness-based sampling

3. Our Multi-phase Method:

• 10% budget for FTLE-based feature sampling

• 40% budget for structured neighborhood sampling for high FTLE values

• 50% budget for smoothness-based sampling

By testing each component independently (FTLE Only, Smoothness Only) and in strategic

combinations (FTLE + Context, FTLE + Smoothness), we can isolate the impact of each sampling

strategy.

4.3 Evaluation Protocol

For each data set, we employ two primary evaluation strategies:

1. Streamline-Based Analysis:

• Generate 10,000 uniformly seeded streamlines

• Trace each streamline for 200 integration steps

• Compare streamlines between original and reconstructed fields using average pairwise

distances

• Compute relative improvement over random sampling baseline
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2. Vector Field Reconstruction:

• Create Delaunay triangulation from sampled points

• Perform linear interpolation within tetrahedra

• Calculate angular differences between original and reconstructed vectors

• Express results as relative improvement over random sampling

4.4 Sampling Configuration

We evaluate our method using three sampling fractions: - 0.01 (1% of original points) - 0.03 (3%

of original points) - 0.05 (5% of original points)

To ensure robust and reproducible results, each configuration (method-dataset-sampling frac-

tion combination) is evaluated using 5 different random seeds. This approach mitigates potential

bias from specific random number sequences and enables statistical analysis of performance vari-

ability.

4.5 Comparative Analysis

Our primary baseline for comparison is random sampling at equivalent sampling fractions. For

each metric (streamline distance and angular difference), we compute the relative improvement:

Relative Distance =
Random Distance
Method Distance

This relative measure provides a clear indication of our method’s effectiveness compared to

the baseline approach while normalizing for data set specific characteristics. Higher values for

relative score indicates that the method accrues lower error when compared to random sampling.
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Chapter 5

Results

This chapter is based on a coauthored paper. I was the lead author and primary

researcher, responsible for implementing all software, running all experiments, and

writing the text. Ayan Biswas contributed ideas regarding initial project direction and

guidance on specific techniques. Hank Childs served as my advisor and provided writ-

ing feedback as well as assistance in analyzing results and discussing adaptations to

approach.

Our experimental evaluation revealed two key findings: first, that traditional scalar field sam-

pling techniques are fundamentally inadequate for vector field preservation, and second, that our

multi-phase approach achieves consistent performance improvements across diverse data sets and

sampling rates.

5.1 Limitations of Scalar Field Techniques

Our experimental evaluation of scalar field sampling adaptations revealed consistent underperfor-

mance across multiple metrics. We systematically evaluated three scalar field sampling adaptations

for vector fields:

1. Vector Magnitude-Driven Sampling: Applying the Biswas et al. [4] multi-criteria impor-
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tance sampling to vector magnitude

2. Vector Direction Data-Driven Sampling: Utilizing directional components as the basis for

importance sampling

3. Per-Component Data-Driven Sampling: Implementing sampling independently to each

vector component

Figure 5.1 presents the quantitative performance assessment of these methods across sampling

rates of 1%, 3%, and 5%. Notably, all three methodologies consistently underperformed relative to

random sampling across both metrics, with performance deteriorating further at higher sampling

densities where improvement would typically be anticipated.

The empirical evidence demonstrates that traditional scalar sampling paradigms, despite their

established efficacy for scalar field representation, fail to capture the complex structural and spatial

interdependencies inherent in vector field data. These quantitative findings provided the founda-

tional motivation for developing our multi-criteria sampling framework, which explicitly addresses

the multifaceted characteristics of vector fields.

5.2 Multi-Phase Sampling Performance

Our multi-phase framework demonstrates statistically significant improvements over random sam-

pling across all tested configurations. Table 5.1 and Table 5.2 show the relative improvements

in angular accuracy and streamline distance metrics respectively, which is further supported by

Figure 5.2. At 5% sampling rate, our method achieves average relative improvements of 1.16 for

angular accuracy and 1.12 for streamline distance across all data sets, with the strongest improve-

ments observed in the Astro dataset for both metrics. This consistency is particularly noteworthy

given the diverse characteristics of our test data sets.

The stability of our method’s performance is evidenced by its compact interquartile ranges in

both figures, especially when compared to single-criterion approaches. This suggests that combin-
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Figure 5.1: Performance evaluation of scalar field sampling adaptations across three sampling densities
(1%, 3%, and 5%). The metrics from top to bottom include: (a) Average Angular Distance and (b) Average
Streamline Distance, both normalized relative to random sampling baseline (dashed red line at 1.0). The
quantitative analysis demonstrates consistent underperformance of all scalar-based methodologies, with 0%
success rate in achieving performance parity with random sampling across most experimental configura-
tions.

ing FTLE analysis with structured neighborhood sampling and smoothness criteria produces more

reliable results than any individual approach alone.

5.3 Comparative Analysis of Methods

Each sampling strategy exhibits distinct characteristics:

1. FTLE + Context demonstrates strong performance comparable to our multi-phase method,

particularly at higher sampling rates. However, its wider performance variance, especially

visible in the angle distance metric at 5% sampling, indicates greater sensitivity to data set

characteristics.

2. FTLE + Smoothness shows the highest peak performance in some cases but exhibits the

widest variance. Its performance improves markedly with increased sampling rates, suggest-

ing that this approach requires higher sampling densities to reliably capture field structure.
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3. FTLE-only sampling shows the most variable performance, with only 33% of cases ex-

ceeding random sampling at 1% sampling rate. This underscores the limitations of single-

criterion approaches for vector field sampling.

5.4 Sampling Rate Effects

Figure 5.2 reveals a clear correlation between sampling rate and method effectiveness. At 1% sam-

pling, improvements over random sampling are modest across all methods, with median relative

improvements rarely exceeding 1.1. As sampling rates increase to 3% and 5%, the advantages of

structured sampling become more pronounced, particularly for our multi-phase method and FTLE

+ Context approaches. This trend suggests a minimum sampling density threshold necessary for

effectively capturing vector field structure. Below this threshold (approximately 3% in our experi-

ments), the distinction between methods becomes less significant, indicating that very sparse sam-

pling may fundamentally limit the effectiveness of sophisticated selection criteria. These results

provide strong evidence that our multi-phase sampling framework successfully balances the com-

peting demands of reliability and effectiveness in vector field sampling. While other methods may

achieve higher peak performance in specific cases, our approach consistently outperforms random

sampling across all data sets and sampling rates, making it particularly suitable for general-purpose

vector field sampling applications.

Performance comparison of sampling methods across sampling rates (1%, 3%, and 5%) using

two key metrics. (a) Average Angular Distance (AAD) relative to random sampling, measuring

local vector field accuracy preservation. (b) Average Streamline Distance relative to random sam-

pling, quantifying preservation of global flow behavior. For both metrics, the y-axis shows relative

improvement over random sampling (dashed red line at 1.0), with values above 1.0 indicating su-

perior performance. Box plots represent the distribution across six scientific data sets and five

random seeds, with whiskers extending to the most extreme non-outlier values. The percentage

below each method indicates how often it outperformed random sampling across all data sets. We
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Figure 5.2: Performance comparison of sampling methods across sampling rates (1%, 3%, and 5%) using
two key metrics. The metrics from top to bottom include: (a) Average Angular Distance (AAD) relative
to random sampling, measuring local vector field accuracy preservation (b) Average Streamline Distance
relative to random sampling, quantifying preservation of global flow behavior. For both metrics, values
above 1.0 (dashed red line) indicate superior performance compared to random sampling. Box plots show
distribution across six scientific datasets and five random seeds. Our multi-phase method (second from left)
demonstrates consistent improvement over random sampling.
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do not display smoothness only in this figure as it is not competitive with the other methods. Our

multi-phase method (second from left) demonstrates both consistent performance and systematic

improvement over random sampling, achieving 100% success rate in all cases but one. While

FTLE + Smoothness shows higher peak performance in specific cases (visible as outliers), the

multi-phase approach provides more reliable performance across diverse vector field types. The

increasing separation from the random baseline at higher sampling rates suggests that structured

sampling approaches become more effective as sampling density increases. Similarly, the vari-

ance of the results per method also decrease with increase in sampling percentage, leading to more

reliable behavior with more samples selected.

5.5 Visual Analysis of Streamline Reconstruction

The qualitative comparison of streamline reconstructions from the Asteroid Impact data set (Fig-

ure 5.3) provides compelling visual evidence of our method’s effectiveness. The original vector

field exhibits several distinctive flow features, most notably a pronounced curved “shell” structure

characterized by abrupt directional changes in the flow field. This feature represents a challenging

test case for sampling methods, as it combines both smooth continuous flow and sharp transitional

regions.

Random sampling captures the general flow structure but introduces noticeable artifacts, par-

ticularly along the shell boundary where the flow direction changes rapidly. The reconstructed

streamlines maintain the overall shell shape and flow patterns, though with some visible noise and

perturbations along critical transition regions. While FTLE analysis effectively identifies regions

of flow separation, using these values alone for sampling leads to significant degradation in stream-

line reconstruction quality. The resulting visualization exhibits more pronounced discontinuities

and artifacts, particularly evident in the distorted shell structure and irregular streamline paths.

This visual assessment aligns with our quantitative findings in Table 5.2, where FTLE-only sam-

pling shows consistently lower performance compared to random sampling across multiple data
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Figure 5.3: A comparison of streamline visualizations across sampling methods for the Asteroid Impact
dataset. Clockwise from top left: (a) Original streamlines with annotated ’shell’ feature, (b) streamlines
from random sampling at 5%, (c) streamlines from FTLE-only sampling at 5%, and (d) streamlines from
our multi-phase method at 5%. Note the distinctive ‘shell’ feature in the original data set, characterized by
an abrupt directional change in the vector field. The regions of interest are annotated using red rectangles.
While random sampling and FTLE-only sampling exhibit different sampling artifacts, our multi-phase ap-
proach better preserves this key structural feature with lesser distortion.

sets.

Our multi-phase approach achieves improved preservation of both the shell structure and the

overall flow field compared to random sampling. The streamlines show smoother transitions across

the shell boundary while maintaining the characteristic curved structure, as well as maintaining the

secondary shell features that are annotated in the figure. The visual results align with our quanti-

tative findings, particularly the improved Average Streamline Distance (ASD) metrics reported in

Table 5.2.
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Table 5.1: Relative Angular Accuracy Improvement Over Random Sampling

Dataset Method 1% 3% 5%

Relative Avg. Angle Distance

Asteroid
Impact

Multi-Phase 1.03 1.09 1.15
FTLE + Context 1.00 1.04 1.07
FTLE + Smooth 0.95 1.05 1.12
FTLE Only 0.93 1.02 1.08
Smoothness 0.29 0.31 0.33

Hurricane
Isabel

Multi-Phase 1.02 1.05 1.07
FTLE + Context 0.99 1.02 1.04
FTLE + Smooth 0.94 0.98 1.01
FTLE Only 0.83 0.86 0.89
Smoothness 0.18 0.18 0.20

CM1
Tornado

Multi-Phase 1.03 1.09 1.12
FTLE + Context 1.01 1.04 1.07
FTLE + Smooth 0.98 1.08 1.13
FTLE Only 0.93 1.02 1.08
Smoothness 0.34 0.33 0.35

Astro

Multi-Phase 1.17 1.30 1.39
FTLE + Context 1.16 1.32 1.43
FTLE + Smooth 1.23 1.49 1.67
FTLE Only 1.15 1.56 1.90
Smoothness 0.18 0.26 0.28

Nimrod

Multi-Phase 1.09 1.08 1.07
FTLE + Context 1.10 1.07 1.07
FTLE + Smooth 1.02 1.01 1.05
FTLE Only 0.40 0.37 0.38
Smoothness 0.06 0.06 0.22

Fishtank

Multi-Phase 1.08 1.11 1.14
FTLE + Context 1.02 1.03 1.06
FTLE + Smooth 1.10 1.14 1.19
FTLE Only 1.01 1.07 1.13
Smoothness 0.61 0.78 0.90

Values greater than 1.0 indicate better performance than random sampling. Multi-Phase refers to our proposed method.
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Table 5.2: Relative Streamline Accuracy Improvement Over Random Sampling

Dataset Method 1% 3% 5%

Rel. Avg. Streamline Distance

Asteroid
Impact

Multi-Phase 1.05 1.12 1.14
FTLE + Context 1.00 1.04 1.04
FTLE + Smooth 1.01 1.11 1.16
FTLE Only 0.86 0.93 0.97
Smoothness 0.35 0.37 0.40

Hurricane
Isabel

Multi-Phase 1.03 1.07 1.09
FTLE + Context 0.99 1.03 1.05
FTLE + Smooth 0.98 1.04 1.07
FTLE Only 0.85 0.93 0.97
Smoothness 0.21 0.20 0.22

CM1
Tornado

Multi-Phase 1.00 1.03 1.05
FTLE + Context 0.98 1.00 1.02
FTLE + Smooth 0.92 0.99 1.03
FTLE Only 0.86 0.93 0.97
Smoothness 0.31 0.28 0.28

Astro

Multi-Phase 1.12 1.14 1.19
FTLE + Context 1.09 1.15 1.21
FTLE + Smooth 1.16 1.23 1.31
FTLE Only 1.12 1.29 1.38
Smoothness 0.23 0.29 0.33

Nimrod

Multi-Phase 1.09 1.15 1.17
FTLE + Context 1.16 1.25 1.24
FTLE + Smooth 1.43 1.46 1.38
FTLE Only 1.61 1.47 1.37
Smoothness 0.22 0.82 1.34

Fishtank

Multi-Phase 1.06 1.08 1.09
FTLE + Context 0.99 1.00 1.01
FTLE + Smooth 1.04 1.06 1.08
FTLE Only 0.93 0.97 1.00
Smoothness 0.55 0.66 0.72

Values greater than 1.0 indicate better performance than random sampling. Multi-Phase refers to our proposed method.
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Chapter 6

Discussion and Parameter Selection

This chapter is based on a coauthored paper. I was the lead author and primary

researcher, responsible for implementing all software, running all experiments, and

writing the text. Ayan Biswas contributed ideas regarding initial project direction and

guidance on specific techniques. Hank Childs served as my advisor and provided writ-

ing feedback as well as assistance in analyzing results and discussing adaptations to

approach.

Through extensive experimentation, we identified several key parameters and design choices

that significantly impact sampling effectiveness. This section details our exploration process and

empirical findings that led to the final framework configuration.

6.1 FTLE Integration Time Selection

The selection of FTLE integration time proved crucial for effective feature identification. Our ini-

tial experiments explored integration periods ranging from 5 to 50 time steps, revealing that longer

integration times did not necessarily improve sampling quality. We found that 10-20 integration

steps provided optimal feature detection, while longer periods often introduced spurious features

arising from accumulated numerical errors. The relationship between integration time and sam-
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pling effectiveness was not monotonic - performance typically peaked around 20 time steps and

declined thereafter, suggesting that excessive temporal information can actually degrade sampling

quality.

6.2 Histogram Configuration

The binning strategy for both FTLE and smoothness-based importance sampling required careful

consideration of the trade-off between resolution and statistical stability. We evaluated bin counts

ranging from 4 to 128, conducting systematic tests across our data set collection. While finer

binning (64+ bins) theoretically offered more precise importance discrimination, it also ends up

oversampling on high-value regions, leading to poor sampling quality. We found that 32 bins con-

sistently provided the best balance between granularity and robustness. This finding held across

different sampling rates (1%, 3%, and 5%) and data sets, suggesting that this represents a funda-

mental sweet spot in the resolution-stability trade-off for vector field sampling.

6.3 Budget Allocation Optimization

Perhaps the most crucial aspect of our framework is the budget allocation between different sam-

pling criteria. For the FTLE-based sampling with context preservation (FTLE + Context), we con-

ducted a systematic sweep of allocation ratios from 10/90 through 60/40. The 20/80 split emerged

as consistently optimal, suggesting that a relatively small number of feature-based seeds combined

with extensive context preservation captures flow structure most effectively.

Similarly, for the combined FTLE and smoothness-based sampling, we explored various

weightings through the same range. The 50/50 split showed the best performance, indicating equal

importance of feature identification and local structure preservation. This allocation was not a clear

winner however, as in some data sets, where FTLE-based sampling alone provided the best results,

adding any percentage of smoothness-based sampling led to worse accuracy, becoming worse as

the ratio tended towards the 50/50 split. However, the 50/50 split was the most consistent across all
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six data sets, while those with a smaller weight for smoothness-based sampling performed worse

than random on some data sets. This finding naturally led to our final three-phase allocation of

10:40:50 - essentially replacing the FTLE-based sampling with structured context preservation

around FTLE-identified features.

A key finding from our analysis emerges from examining the relationship between vector

field statistical distributions and sampling method performance. The data sets where FTLE-based

sampling demonstrated superior performance (Astro and Nimrod) share a distinctive statistical

property - their FTLE values and Jacobian Frobenius norms are concentrated within remarkably

narrow ranges compared to the other data sets, with most values clustered tightly around their

respective medians. This concentrated distribution suggests these fields have highly localized re-

gions where flow separation and directional changes deviate significantly from the background,

making feature identification particularly effective through FTLE analysis alone. In contrast, data

sets with wider value distributions benefit more from our multi-phase approach, which can better

handle varying scales of feature importance. This finding points to opportunities for a research

direction investigating how data set characteristics might guide sampling approach optimization,

without needing a human in the loop.

6.4 Alternative Approaches Explored

We investigated several alternative technical approaches that, while ultimately not included in our

final framework, provided valuable insights. Log-scaled binning schemes were tested but showed

no consistent improvement over linear binning. We explored alternative smoothness metrics in-

cluding determinant-based measures and vorticity calculations, but found the Frobenius norm of

the Jacobian provided the most reliable indication of local structure complexity. These explorations

revealed that simpler, more robust approaches often outperformed more sophisticated techniques

in practice.

Our systematic exploration of these parameters and alternatives provides a strong empirical
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foundation for our framework’s design choices. While different scientific domains might benefit

from parameter tuning, our findings suggest that these values represent robust defaults suitable for

a wide range of vector field sampling applications.
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Chapter 7

Conclusion

This research introduces a novel multi-phase sampling framework for vector fields that

effectively preserves both local and global flow characteristics at sampling rates as low

as 1%. Through comprehensive evaluation across six diverse scientific data sets, we

have demonstrated that our approach consistently outperforms random sampling and

single-criterion methods in preserving vector field structure and flow behavior. The

experimental results validate our fundamental hypothesis that effective vector field

sampling requires the simultaneous consideration of multiple complementary charac-

teristics.

The key insight driving our method’s success lies in its unified treatment of both local and

global vector field properties. By combining FTLE-based feature identification with structured

neighborhood preservation and smoothness-based sampling, our framework captures the full spec-

trum of vector field behavior - from instantaneous directional changes to longer-term trajectory

evolution. This comprehensive approach enables reliable preservation of complex flow features

while maintaining computational efficiency suitable for in situ deployment. The structured neigh-

borhood sampling strategy, in particular, proves crucial for maintaining spatial context around

regions of significant flow separation, addressing a fundamental limitation of previous sampling

approaches.
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Our experimental results demonstrate that the multi-phase framework achieves consistent im-

provement over random sampling across all sampling fractions and data sets, with relative im-

provements in angular accuracy ranging from 1.02 to 1.39 and streamline distance metrics show-

ing similar gains. At 5% sampling rate, our method achieves an average relative improvement

of 1.16 for angular accuracy across all datasets, with particularly strong performance on the As-

tro dataset (1.39×) and the Fishtank dataset (1.14×). This consistency stands in marked contrast

to single-criterion methods, which exhibit strong data set dependence and often fail to generalize

across different flow types. The framework’s robust performance across diverse scientific domains

underscores its potential as a general-purpose data-agnostic solution for in situ vector field data

reduction through sampling.

Future research directions could extend this framework to address the unique challenges

of time-varying vector fields, where temporal coherence introduces additional complexity to the

sampling problem. The interaction between spatial and temporal features may require novel ap-

proaches to capture evolving flow structures while maintaining computational efficiency. Time-

varying fields present particular challenges for FTLE computation and neighborhood preservation,

as the temporal evolution of features may necessitate adaptive sampling strategies that can respond

to changing flow characteristics. Other directions to consider would be to adaptively choose pa-

rameters based on data set statistical properties such as nature of distribution of values, dynamic

range of values and more.

The empirical evidence presented in this work establishes clear guidelines for practical de-

ployment of vector field sampling in production scientific workflows. The consistent performance

improvements across diverse data sets, coupled with the framework’s inherent parallelizability

and linear scaling characteristics, make it immediately applicable to current large-scale simula-

tion environments. While our current evaluation focuses on demonstrating the effectiveness of the

sampling strategy, future work should include explicit parallel implementation and evaluation on

truly large-scale datasets to fully validate the framework’s potential for in situ deployment. The

systematic analysis of parameter sensitivity and practical implementation considerations provides
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a robust foundation for deployment across different scientific domains, while the identified paths

for extension suggest rich opportunities for future development.
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